A containerised approach to labelled C&C traffic

Vitenskapelig artikkel 2022

Om publikasjonen

Format

PDF-dokument

Størrelse

279.5 KB

Språk

Engelsk

Last ned publikasjonen
Markus Leira Asprusten Julie Lidahl Gjerstad Gudmund Grov Espen Hammer Kjellstadli Robert Flood Henry Clausen David Aspinall
A challenge for data-driven methods for intrusion detection is the availability of high quality and realistic data, with ground truth at suitable level of granularity to train machine learning models. Here, we explore a container-based approach for simulating and labelling C&C traffic of real malware through a proof-of-concept implementation.

Utgiverinformasjon

-

Nylig publisert