Vector symbols explained

Here you will find the mathematical notation used for the n-vector page.

The notation system used for the n-vector page and in the files for download is presented in Chapter 2 of the following thesis: Gade (2018): Inertial Navigation - Theory and Applications. A simplified presentation is given here.

Coordinate frame

coordinate frame has a position (origin), and three axes (basis vectors) xy and z (orthonormal). Thus, a coordinate frame can represent both position and orientation, i.e. 6 degrees of freedom. It can be used to represent a rigid body, such as a vehicle or the Earth, and it can also be used to represent a "virtual" coordinate frame such as North-East-Down.

Coordinate frames are designated with capital letters, e.g. the three generic coordinate frames AB, and C.

We also have specific names for some common coordinate frames:

Coordinate frame  Description
E Earth
N North-East-Down
B Body, i.e. the vehicle

 

Note that it is no problem to only use the position or the orientation of a coordinate frame. E.g., in some cases, we just care about the position of point B and C (and sometimes we only care about the orientation of N).

General vector

A 3D vector given with numbers is written e.g. 
2 4 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaWaamWaaeaafa qabeWabaaabaGaaGOmaaqaaiaaisdaaeaacaaI2aaaaaGaay5waiaa w2faaaaa@3A61@
. The three numbers are the vector components along the x-y- and z-axes of a coordinate frame. If the name of the vector is k, and the coordinate frame is A, we will use bold k and A as trailing superscript, i.e.:
 
k A = 2 4 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaakiabg2da9maadmaabaqbaeqabmqaaaqaaiaa ikdaaeaacaaI0aaabaGaaGOnaaaaaiaawUfacaGLDbaaaaa@3D58@
 
Thus 
k A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaaaaa@380D@
 is the 3D vector that is constructed by going 2 units along the x-axis of coordinate frame A, 4 units along the y-axis, and 6 along the z-axis. We say that the vector k is decomposed in A.
 

Position vector

Instead of the general vector k, we can have a specific vector that goes from A to B. This vector can be decomposed in CAB, and C are three arbitrary coordinate frames. We would write this vector:

p AB C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGbbGaamOqaaqaaiaadoeaaaaaaa@39A0@

In program code: p_AB_C

The letter p is used since this is a position vector (the position of B relative to A, decomposed/resolved in the axes of C).

Example a)

p EB E = 0 0 6371 km MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGfbGaamOqaaqaaiaadweaaaGccqGH9aqpdaWadaqaauaa beqadeaaaeaacaaIWaaabaGaaGimaaqaaiaaiAdacaaIZaGaaG4nai aaigdaaaaacaGLBbGaayzxaaGaam4Aaiaad2gaaaa@4306@

From the subscript, we see that this is the vector that goes from E (center of the Earth) to B (the vehicle). The superscript tells us that it is decomposed in E, which we now assume has its z-axis pointing towards the North Pole. From the values, we see that the vector goes 6371 km towards the North Pole, and zero in the x and y directions. If we assume that the Earth is a sphere with radius 6371 km, we see that B is at the North Pole.

Example b)

p BC N = 50 60 5 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGcbGaam4qaaqaaiaad6eaaaGccqGH9aqpdaWadaqaauaa beqadeaaaeaacaaI1aGaaGimaaqaaiaaiAdacaaIWaaabaGaeyOeI0 IaaGynaaaaaiaawUfacaGLDbaacaWGTbaaaa@424F@

The vector goes from B, e.g. an aircraft, to C, e.g. an object. The vector is decomposed in N (which has North-East-Down axes). This means that C is 50 m north of B and 60 m east, and C is also 5 m above B.

Properties of the position vector

For the general position vector 
p AB C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGbbGaamOqaaqaaiaadoeaaaaaaa@39A0@
, we have the property:

p AB C = p BA C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGbbGaamOqaaqaaiaadoeaaaGccqGH9aqpcqGHsislcaWH WbWaa0baaSqaaiaadkeacaWGbbaabaGaam4qaaaaaaa@3F18@

I.e. swapping the coordinate frames in the subscript gives a vector that goes in the opposite direction. We also have:

p AD C = p AB C + p BD C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGbbGaamiraaqaaiaadoeaaaGccqGH9aqpcaWHWbWaa0ba aSqaaiaadgeacaWGcbaabaGaam4qaaaakiabgUcaRiaahchadaqhaa WcbaGaamOqaiaadseaaeaacaWGdbaaaaaa@4297@

 

Math equation image

I.e., going from A to D is the same as first going from A to B, then from B to D. From the equation, we see that B is cancelled out. ABC, and D are arbitrary coordinate frames.

Rotation matrix

If we return to the general vector 
k A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaaaaa@380D@
, we could also have a coordinate frame B, with different orientation than A. The same vector k could be expressed by components along the xy and z-axes of B instead A, i.e. it can also be decomposed in B, written 
k B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaaaaa@380D@
. Note that the length of 
k B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaaaaa@380D@
 equals the length of 
k A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaaaaa@380D@
. We will now have the relation:

k A = R AB k B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamyqaaaakiabg2da9iaahkfadaWgaaWcbaGaamyqaiaa dkeaaeqaaOGaaGjcVlaahUgadaahaaWcbeqaaiaadkeaaaaaaa@3F34@

R AB MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGbbGaamOqaaqabaaaaa@38BA@
is the 9 element (3x3) rotation matrix (also called direction cosine matrix) that transforms vectors decomposed in B to vectors decomposed in A. Note that the B in 
R AB MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGbbGaamOqaaqabaaaaa@38BA@
should be closest to the vector decomposed in B (following the "the rule of closest frames", see Section 2.5.3 in Inertial Navigation - Theory and Applications for details). If we need to go in the other direction, we have:
 
k B = R BA k A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaC4AamaaCa aaleqabaGaamOqaaaakiabg2da9iaahkfadaWgaaWcbaGaamOqaiaa dgeaaeqaaOGaaGjcVlaahUgadaahaaWcbeqaaiaadgeaaaaaaa@3F34@
 
Now we see that A is closest to A.

 

Properties of the rotation matrix

We have that

R AB = R BA T MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGbbGaamOqaaqabaGccqGH9aqpdaqadaqaaiaahkfadaWg aaWcbaGaamOqaiaadgeaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabe aacaWGubaaaaaa@3EF7@

where the T means matrix transpose. We also have the following property (closest frames are cancelled):

R AC = R AB R BC MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGbbGaam4qaaqabaGccqGH9aqpcaWHsbWaaSbaaSqaaiaa dgeacaWGcbaabeaakiaahkfadaWgaaWcbaGaamOqaiaadoeaaeqaaa aa@3EFF@

If we compare these properties with the position vector, we see that they are very similar: minus is replaced by transpose, and plus is replaced by matrix multiplication. AB, and C are three arbitrary coordinate frames.

n-vector

The n-vector is in almost all cases decomposed in E, and in the simplest form, we will write it

n E MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOBamaaCa aaleqabaGaamyraaaaaaa@3814@

This simple form can be used in cases where there is no doubt about what the n-vector expresses the position of. In such cases, we can also express the position using e.g. the variables lat and long, without further specification.

However, if we are interested in the position of multiple objects, e.g. A and B, we must specify which of the two, both for n-vector and for latitude/longitude. In this case we will write:

n EA E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOBamaaDa aaleaacaWGfbGaamyqaaqaaiaadweaaaaaaa@39A3@
and 
n EB E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOBamaaDa aaleaacaWGfbGaamyqaaqaaiaadweaaaaaaa@39A3@
(program code: n_EA_E and n_EB_E

 

And

la t EA ,lon g EA MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamiBaiaadg gacaWG0bWaaSbaaSqaaiaadweacaWGbbaabeaakiaacYcacaWGSbGa am4Baiaad6gacaWGNbWaaSbaaSqaaiaadweacaWGbbaabeaaaaa@40EB@
and 
la t EB ,lon g EB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamiBaiaadg gacaWG0bWaaSbaaSqaaiaadweacaWGbbaabeaakiaacYcacaWGSbGa am4Baiaad6gacaWGNbWaaSbaaSqaaiaadweacaWGbbaabeaaaaa@40EB@
 
The subscript E might seem redundant here, it could be sufficient to use only A or B. However, we have chosen to also include the E, since both n-vector and latitude/longitude are depending on the reference ellipsoid that is associated with E (see Section 4.1. in Gade (2010) for more about this). Note however, that the subscript rules (swapping and canceling) we had for 
p AB C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGbbGaamOqaaqaaiaadoeaaaaaaa@39A0@
 and 
R AB MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGbbGaamOqaaqabaaaaa@38BA@
 cannot be used for n-vector or lat/long.
 
For spherical Earth, we have a simple relation between 
p EB E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGfbGaamOqaaqaaiaadweaaaaaaa@39A6@
 and 
n EB E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCOBamaaDa aaleaacaWGfbGaamOqaaqaaiaadweaaaaaaa@39A4@
:

p EB E = n EB E r Earth + h EB = n EB E r Earth z EB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaaCiCamaaDa aaleaacaWGfbGaamOqaaqaaiaadweaaaGccqGH9aqpcaWHUbWaa0ba aSqaaiaadweacaWGcbaabaGaamyraaaakiabgwSixpaabmaabaGaam OCamaaBaaaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaGc cqGHRaWkcaWGObWaaSbaaSqaaiaadweacaWGcbaabeaaaOGaayjkai aawMcaaiabg2da9iaah6gadaqhaaWcbaGaamyraiaadkeaaeaacaWG fbaaaOGaeyyXIC9aaeWaaeaacaWGYbWaaSbaaSqaaiaadweacaWGHb GaamOCaiaadshacaWGObaabeaakiabgkHiTiaadQhadaWgaaWcbaGa amyraiaadkeaaeqaaaGccaGLOaGaayzkaaaaaa@5D31@

where 
r Earth MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGfbGaamyyaiaadkhacaWG0bGaamiAaaqabaaaaa@3BD5@
 is the radius of the Earth, 
h EB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGfbGaamOqaaqabaaaaa@38CF@
is the height of B and 
z EB MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabmqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGfbGaamOqaaqabaaaaa@38E1@
 is the depth. For more information about how to use n-vector in various calculations, see the 10 examples and Gade (2010).