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Summary

A bubble curtain is a barrier of rising air bubbles, and it is typically made by driving compressed air
through a perforated pipe under water. The bubble curtain can be used as a protective measure
to shelter marine life from underwater noise pollution such as controlled underwater explosions,
engines, pile driving, and deep-water drilling. In this report we evaluate the protection capabilities of
bubble curtains by constructing a simple method to calculate the corresponding sound transmission.

Theoretical considerations predict that the speed of sound in a bubble curtain can be smaller
than both the speed of sound in air and water because the presence of the bubbles creates a highly
compressible mixture. The effect is primarily dependent on the ratio of the total air volume to the
overall volume of the mixture. This key parameter is known as the volume fraction of air.

Due to the small speeds of sound, there is a significant (acoustic) impedance mismatch between
the water and bubble curtain. Impedance is a measure of how much a medium resists the flow of
internal sound waves and is defined as the product between density and speed of sound. The result
of the large impedance mismatch is that the bubble curtain acts as a high-reflective sound shield,
under the right conditions. In short, it does indeed hold high protection capabilities.

Our model shows that bubble curtains are most effective in shielding against sound with fre-
quencies up to 100 kHz, although the exact performance varies with certain parameters such as
hydrostatic pressure, the size of the bubbles, and the angle of the sound waves relative to the curtain.
Our model shows significantly poorer performance of the bubble curtains at frequencies higher than
1 MHz, but the model does not account for disordered localization phenomena in these ranges. An
improved future model may shed more light on performance against such frequencies.
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Sammendrag

En boblegardin er en barriere av stigende luftbobler. Den lages vanligvis ved å føre komprimert luft
gjennom et perforert rør under vann. Boblegardinen kan brukes som et beskyttelsestiltak for å skjerme
marint liv fra støyforurensning under vann, for eksempel kontrollerte undervannseksplosjoner, motorer,
pæling og dypvannsboring. I denne rapporten evaluerer vi beskyttelsesevnen til boblegardiner ved å
konstruere en enkel metode for å beregne den tilsvarende lydtransmisjonen.

Teoretiske betraktninger forutsier at lydhastigheten i en boblegardin kan være mindre enn både
lydhastigheten i luft og vann fordi tilstedeværelsen av boblene skaper en svært komprimerbar
blanding. Effekten er primært avhengig av forholdet mellom det totale luftvolumet og det totale
volumet av blandingen. Denne nøkkelparameteren kalles luftens volumfraksjon.

På grunn av de lave lydhastighetene er det en betydelig forskjell i impedansen mellom vannet
og boblegardinen. Akustisk impedans er et mål på hvor mye et medium motstår forplantning av
interne lydbølger, og defineres som produktet av tetthet og lydhastighet. Resultatet av den store
impedansforskjellen er at boblegardinen fungerer som et høyreflekterende lydskjold, under de rette
forholdene. Kort sagt har boblegardinen høy beskyttelsesevne.

Modellen vår viser at boblegardiner er mest effektive i å skjerme mot lyd med frekvenser opp til 100
kHz, selv om den nøyaktige beskyttelsesevnen varierer med visse parametere som hydrostatisk trykk,
størrelsen på boblene og vinkelen mellom lydbølgene og boblegardinen. Modellen vår viser betydelig
dårligere beskyttelsesevne ved frekvenser høyere enn 1 MHz, men den tar ikke høyde for visse
fenomener i disse områdene. En forbedret fremtidig modell kan kaste mer lys over beskyttelsesevnen
mot slike frekvenser.
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1 Introduction
There are several contexts in which the Norwegian navy has to perform controlled explosions of
sea-mines, torpedos, or other explosive objects. Concretely such contexts usually include: cleaning
up remnants of the second world war, testing shock-requirements for the potential purchase of ships
or submarines, or training exercises. In any case, these explosions lead to sound waves propagating
in the water which can damage (or disturb) marine life or marine infrastructure. To minimize the
damage it is important to carefully consider the relevant protective measures.

Sometimes the explosive object can be moved to a distant area away from the unintended targets,
so that the sound wave becomes sufficiently damped before it reaches them. In cases where it is hard
to evaluate the charge’s sensitivity, it is risky to move or approach the charge due to the potential of
accidental detonation. In such cases, methods to dampen the sound wave are useful.

One protective measure against the sound wave produced by an underwater explosion are
so-called bubble curtains. A bubble curtain is typically made by continuously driving air through
one or more submerged perforated pipes. Depending on the amount of air-flow, the resulting wall of
bubbles act as a high-impedance barrier capable of blocking sound waves. In 2017 The Norwegian
Defence Research Establishment (FFI) performed small-scale experiments that indicated that a
bubble curtain can effectively block sound, but the optimal conditions are currently unknown [1].

Predicting the optimal conditions for the damping of a bubble curtain is challenging. The reason
is that if the sound frequency matches the bubble resonance frequencies, then the sound wave
induces dynamics in the individual bubbles and the bubbles will interact with each other. Taking all
of these interactions into account is a complicated matter, even with purely numerical methods such
as finite-element analysis and smoothed particle hydrodynamics. An attempt to describe the effects
of bubble interactions are exemplified in an elegant and detailed theory constructed by Domenico
[2]. The theory takes the following into account: i) heat conduction from the pulsating bubbles, ii)
individual bubble sound radiation, and iii) viscous damping by the water on the bubbles.

In this report, we use the scattering theory formalism in combination with the theory of ideal
mixtures, to construct a theory which calculates an upper bound for the reflection of sound from a
bubble curtain. The scattering theory is simple to use, because the bubbles are treated statically.
In the future bubble dynamics can also be incorporated into the theory, but it is not the focus of
this report. In its current state the theory predicts optimal reflection conditions that together with
Domenico’s results paint a clearer picture of how the bubble curtain can be designed with optimal
protection capabilities.
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2 Bilayer scattering
The theory presented here closely follows [3, 4]. As shown in Fig. 2.1. we consider two adjacent
layers labelled medium 1 and 2. Both media are homogenous. In region 𝑗 (= 1, 2) the density, speed
of sound, and impedance are 𝜌 𝑗 , 𝑐 𝑗 , and 𝑧 𝑗 = 𝜌 𝑗𝑐 𝑗 respectively. We will consider the scattering

Figure 2.1 An illustration of the sound scattering problem for a bilayer. The incoming sound
wave is reflected and refracted at the interface.

problem where a sound wave is incoming from region 1. The solution ansatze for the incoming,
reflected, and transmitted waves are

𝑝𝑖 = 𝑃𝑖𝑒
𝑖 (𝜔𝑡−𝑘1𝑥 cos 𝜃𝑖−𝑘1𝑦 sin 𝜃𝑖 ,

𝑝𝑟 = 𝑃𝑟𝑒
𝑖 (𝜔𝑡+𝑘1𝑥 cos 𝜃𝑟−𝑘1𝑦 sin 𝜃𝑟 ,

𝑝𝑡 = 𝑃𝑡𝑒
𝑖 (𝜔𝑡−𝑘2𝑥 cos 𝜃𝑡−𝑘2𝑦 sin 𝜃𝑡 ,

(2.1)

respectively. The dispersion relation follows by inserting the ansatze into the wave equation and is
𝑘𝑖 = 𝜔/𝑐𝑖 . There are two boundary conditions that must be satisifed at the interface 𝑥 = 0:

1. Continuity of pressure: 𝑝𝑖 + 𝑝𝑟 = 𝑝𝑡 .
2. Continuity of orthogonal particle velocity: 𝑢𝑖 cos 𝜃𝑖 − 𝑢𝑟 cos 𝜃𝑟 = 𝑢𝑡 cos 𝜃𝑡 .

From the pressure boundary condition we obtain Snell’s law and its consequences,

𝑘1 sin 𝜃𝑖 = 𝑘1 sin 𝜃𝑟 = 𝑘2 sin 𝜃𝑡 , (General Snell’s law),
𝜃𝑖 = 𝜃𝑟 , (Law of reflection),

sin 𝜃𝑡 =
𝑐2
𝑐1

sin 𝜃𝑖 , (Law of refraction),

1 + 𝑅 = 𝑇, (Pressure magnitude matching)

(2.2)

where we in the final line defined the reflection 𝑅 = 𝑃𝑟/𝑃𝑖 and transmission 𝑇 = 𝑃𝑡/𝑃𝑖 coefficients.
The law of reflection tells us that the angle of incidence is always equal to the angle of reflection,
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and the law of refraction reveals that the degree of refraction depends on the sound speed ratio
𝑐2/𝑐1.

If we use the pressure magnitude matching condition together with the boundary condition on
orthogonal particle velocities we obtain explicit expressions for the reflection and transmission
coefficients,

𝑅 =

𝑧2
𝑧1
− cos 𝜃𝑡

cos 𝜃𝑖
𝑧2
𝑧1
+ cos 𝜃𝑡

cos 𝜃𝑖

,

𝑇 = 1 + 𝑅.

(2.3)

Using Eq. (2.3) we can also calculate the intensity reflection and transmission coefficients

𝑅𝐼 = |𝑅 |2,

𝑇𝐼 =
𝑧1
𝑧2
|𝑇 |2,

𝑅𝐼 + 𝑇𝐼 ≠ 1.

(2.4)

Similarly the power reflection and transmission coefficients are

𝑅Π = 𝑅𝐼 = |𝑅 |2,

𝑇Π =
cos 𝜃𝑡
cos 𝜃𝑖

𝑇𝐼 =
cos 𝜃𝑡
cos 𝜃𝑖

𝑧1
𝑧2
|𝑇 |2,

𝑅Π + 𝑇Π = 1.

(2.5)

2.1 Normal incidence

For normal incidence 𝜃𝑖 = 0, the reflection and transmission coefficients become

𝑅 =
1 − 𝑧1/𝑧2
1 + 𝑧1/𝑧2

,

𝑇 = 1 + 𝑅 =
2

1 + 𝑧1/𝑧2
,

𝑅Π = 𝑅𝐼 = 𝑅2 =

(
1 − 𝑧1/𝑧2
1 + 𝑧1/𝑧2

)2
,

𝑇Π = 𝑇𝐼 =
𝑧1
𝑧2
𝑇2 =

4(𝑧1/𝑧2)
(1 + 𝑧1/𝑧2)2 .

(2.6)

For normal incidence the reflection and transmission coefficients are always real, and the degree of
reflection and transmission only depends on the impedance mismatch 𝑧1/𝑧2. We will consider five
relevant cases. The reflection and transmission coefficients are shown in Fig. 2.2. Note that all the
reflection and transmission coefficients are real numbers. Negative values are interpreted as a phase
change of 180◦ compared to the incident wave.
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Figure 2.2 The reflection and transmission properties as a function of impedance mismatch
for normal incidence.
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2.1.1 Case 1: Transparent interface

In this case the impedances are equal, 𝑧1 = 𝑧2, so the interface is transparent. The reflection and
transmission properties are

𝑅Π = 𝑅𝐼 = 𝑅2 = 0,
𝑇Π = 𝑇𝐼 = 𝑇2 = 1,

(2.7)

and there is zero reflection. This is intuitive because in this case region 1 is the same as region 2,
and there is no interface separating them.

2.1.2 Case 2: scattering from low to high impedance

In this case 𝑧1/𝑧2 < 1,

𝑅 > 0,
𝑇 > 1,

(2.8)

so there is both reflection and transmission. Note that there are zero phase changes upon reflection
and transmission, but the transmitted wave has a larger pressure amplitude than the incoming wave.
This is still consistent with conservation of energy because 𝑅Π + 𝑇Π = 1.

2.1.3 Case 3: scattering from high to low impedance

In this case 𝑧1/𝑧2 > 1,

𝑅 < 0,
𝑇 < 1,

(2.9)

so there is both reflection and transmission. The reflected wave has smaller amplitude than the
incoming wave, but is 180◦ out of phase. The transmitted wave has smaller amplitude than the
incoming wave, but has the same phase.

2.1.4 Case 4: scattering from low to rigid (incompressible) medium

In this case 𝑧1/𝑧2 ≪ 1 such that 𝑧1/𝑧2 → 0,

𝑅 = 1,
𝑇 = 2,

𝑅Π = 1,
𝑇Π = 0.

(2.10)

This example describes e.g. an air-water interface where the sound wave travels through the air
and is reflected from the water surface. The wave does not enter the rigid medium, but is totally
reflected with the same phase as the incident wave. This leads to that the pressure in region 1 is
doubled. The interpretation of Eq. (2.1) in region 2 is that the wavelength becomes infinite (because
the speed of sound is infinite), such that the pressure is a completely flat function of position 𝑥.
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2.1.5 Case 5: scattering from a free surface

In this case 𝑧1/𝑧2 ≫ 1 such that 𝑧1/𝑧2 → ∞,

𝑅 = −1,
𝑇 = 0,
𝑅𝐼 = 1,
𝑇𝐼 = 0.

(2.11)

This example describes e.g. an water-air interface where the sound wave travels through the water
and is reflected from the water surface. The incoming wave is completely reflected with a 180◦
phase change. The pressure at the interface is always zero to match the atmospheric pressure.

2.2 Oblique incidence

The case for oblique incidence where 𝜃𝑖 ≠ 0 is slightly more complicated. Firstly, the law of
refraction results in the so-called critical angle

𝜃𝑐 = arcsin
(
𝑐1
𝑐2

)
. (2.12)

The critical angle only exists when 𝑐1/𝑐2 < 1. In the case when the angle of incidence is larger than
the critical angle the transmitted wave becomes evanescent. That is for the case 𝜃𝑖 > 𝜃𝑐 we have

𝑝𝑡 = 𝑃𝑡𝑒
𝑖 (𝜔𝑡−𝑘1𝑦 sin 𝜃𝑖)𝑒−𝛾𝑥 ,

𝛾 = 𝑘2

√︄(
𝑐2
𝑐1

)2
sin2 𝜃𝑖 − 1,

(2.13)

where 𝛾 is the decay length. Note that the evanescent wave only propagates parallel to the interface,
and decays perpendicular to the interface. Therefore the evanescent wave does not carry energy into
medium 2 which means that 𝑇Π = 0 for incidence angles larger than the critical angle. Secondly,
there is the so-called angle of intromission 𝜃𝐼 which is characterised by perfect transmission and is
given by

sin 𝜃𝐼 =

√︄
(𝑧2/𝑧1)2 − 1

(𝑧2/𝑧1)2 − (𝑐2/𝑐1)2 . (2.14)

The angle of intermission can only exist when Eq. (2.14) is real.
In summary, for oblique incidence there are four cases to consider whose reflection and

transmission coefficients are shown in Fig. 2.3:
1. If 𝑐2/𝑐1 < 1 and 𝑧2/𝑧1 < 1, there is no critical angle or angle of intromission.
2. If 𝑐2/𝑐1 < 1 and 𝑧2/𝑧1 > 1, then there is only an angle of intromission.
3. If 𝑐2/𝑐1 > 1 and 𝑧2/𝑧1 > 1, there is only a critical angle.
4. If 𝑐2/𝑐1 > 1 and 𝑧2/𝑧1 < 1, then there is one angle of intromission and one critical angle.

The critical angle is always larger than the angle of intromission.
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Figure 2.3 The reflection and transmission properties as a function of angle of incidence. Each row correspond to case 1-4 which are
described below Eq. (2.14). The columns in a specific row display different scattering properties for the same case.
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2.3 Interface between water and air

For water and air, the density, speed of sound, and impedance are:

𝜌air = 1.2 kg/m3, 𝜌water = 1000 kg/m3,

𝑐air = 340 m/s, 𝑐water = 1500 m/s,
𝑧air = 408 kg/m2s, 𝑧water = 1.5 × 106 kg/m2s.

We can use these values to compute the reflection and transmission coefficients for i) an air-water
interface for a sound wave travelling in air that hits the ocean surface and ii) a water-air interface for
a sound wave travelling in water and hits the ocean surface. The results are shown in Fig. 2.3.

For the air-water interface there is a critical angle of 𝜃𝑐 = 13.1◦ and no angle of intromission.
Thus for angles of incidence larger than 13.1◦, an evanescent wave is formed close to the interface.
The impedance ratio is very small 𝑧air/𝑧water ≪ 1 which means that even for incidence angles
smaller than the critical angle most of the sound wave is reflected. The wave is reflected without a
phase change for most of the incident angles.

For the water-air interface there is neither a critical angle or an intromission angle. Due to the
large impedance mismatch most of the wave is reflected, but because 𝑧water/𝑧air ≫ 1 there is a 180◦
phase change between the incident and reflected wave.
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Figure 2.4 The reflection and transmission properties as a function of angle of incidence. The first and second row corresponds to the
air-water and water-air interfaces respectively. The columns in a specific row display different scattering properties.
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3 Trilayer scattering
The theory presented here closely follows [3, 4]. The scattering solutions discussed in the previous
chapter can straightforwardly be extended to the case of a trilayer as shown in Fig. 3.1. An incident
sound wave from medium 1, is reflected back into medium 1, and transmitted through the barrier
to medium 3. If medium 1 and 3 are both water, this setup can be used to investigate the sound
scattering properties of a barrier placed in water. We will first consider the general case where
medium 1, 2, and 3 are different.

Figure 3.1 An illustration of the sound scattering problem for a trilayer.

We assume that the incoming wave originates in material 1 with angular frequency 𝜔 and
wavenumber 𝑘1. The solution ansatz1 for oblique incidence is

𝑝𝑖 = 𝑃𝑖𝑒
𝑖 (𝜔𝑡−𝑘1𝑥 cos 𝜃1−𝑘1𝑦 sin 𝜃1 ,

𝑝𝑟 = 𝑃𝑟𝑒
𝑖 (𝜔𝑡+𝑘1𝑥 cos 𝜃1−𝑘1𝑦 sin 𝜃1 ,

𝑝𝑎 = 𝐴𝑒𝑖 (𝜔𝑡−𝑘2𝑥 cos 𝜃2−𝑘2𝑦 sin 𝜃2 ,

𝑝𝑏 = 𝐵𝑒𝑖 (𝜔𝑡+𝑘2𝑥 cos 𝜃2−𝑘2𝑦 sin 𝜃2 ,

𝑝𝑡 = 𝑃𝑡𝑒
𝑖 (𝜔𝑡−𝑘3𝑥 cos 𝜃3−𝑘3𝑦 sin 𝜃3 .

(3.1)

The corresponding boundary conditions are pressure and normal velocity continuity at both of
the interfaces:

1. Pressure continuity at 𝑥 = 0: 𝑃𝑖 + 𝑃𝑟 = 𝐴 + 𝐵.
2. Normal velocity continuity at 𝑥 = 0: 𝑃𝑖−𝑃𝑟

𝑍1
= 𝐴−𝐵

𝑍2

1Alternatively the trilayer scattering problem can be expressed as an infinite geometric sum where each summand is a
bilayer scattering problem as shown in Fig. 3.1. The geometric-sum method gives the same answer as the ansatze in Eq.
3.1, but superficially the calculation looks more complicated. The geometric-sum method is illustrated in [4].
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3. Pressure continuity at 𝑥 = 𝐿: 𝐴𝑒−𝑖𝜅2𝐿 + 𝐵𝑒𝑖𝜅2𝐿 = 𝑃𝑡𝑒
−𝑖𝜅3𝐿 .

4. Normal velocity continuity at 𝑥 = 𝐿: 𝐴𝑒−𝑖𝜅2𝐿−𝐵𝑒𝑖𝜅2𝐿

𝑍2
=

𝑃𝑡𝑒
−𝑖𝜅3𝐿

𝑍3
.

To simplify the notation we have here defined 𝜅 𝑗 = 𝑘 𝑗 cos 𝜃 𝑗 and 𝑍 𝑗 = 𝑧 𝑗/cos 𝜃 𝑗 where 𝑗 = {1, 2, 3}.
If we insert the ansatze into the boundary conditions, we find that the reflection and transmission
coefficient become

𝑅 =
𝑃𝑟

𝑃𝑖

=

(
1 − 𝑍1

𝑍3

)
cos 𝜅2𝐿 + 𝑖

(
𝑍2
𝑍3

− 𝑍1
𝑍2

)
sin 𝜅2𝐿(

1 + 𝑍1
𝑍3

)
cos 𝜅2𝐿 + 𝑖

(
𝑍2
𝑍3

+ 𝑍1
𝑍2

)
sin 𝜅2𝐿

,

𝑇 =
𝑃𝑡

𝑃𝑖

=
2𝑒𝑖𝜅3𝐿(

1 + 𝑍1
𝑍3

)
cos 𝜅2𝐿 + 𝑖

(
𝑍2
𝑍3

+ 𝑍1
𝑍2

)
sin 𝜅2𝐿

.

(3.2)

The boundary conditions also give us the law of refraction (Snell’s law) on the form

sin 𝜃1
𝑐1

=
sin 𝜃2
𝑐2

=
sin 𝜃3
𝑐3

(3.3)

as well as the law of reflection at each interface. The critical angle for the 1-2 and 2-3 interfaces
are 𝜃1,𝑐 = arcsin(𝑐1/𝑐2) and 𝜃2,𝑐 = arcsin(𝑐2/𝑐3) respectively. If 𝜃 𝑗 > 𝜃 𝑗 ,𝑐, ( 𝑗 = {1, 2}) we obtain
evanescent solutions. In the limit where there is no barrier (𝐿 → 0) we recover the reflection and
transmission coefficient for the bilayer configuration.

3.1 The scattering properties of a water-barrier-water system

To study the effect of a barrier placed in water we will assume that region 1 and 3 consists of water.
In that case the impedance and sound speed of region 1 and 3 are identical. Also, the angle of
incidence in material 1 is equal to the angle of emergence in material 3, 𝜃1 = 𝜃3. The reflection and
transmission coefficients in Eq. (3.2) then simplify to

𝑅 =

𝑖

(
𝑍2
𝑍1

− 𝑍1
𝑍2

)
sin 𝜅2𝐿

2 cos 𝜅2𝐿 + 𝑖

(
𝑍2
𝑍1

+ 𝑍1
𝑍2

)
sin 𝜅2𝐿

,

𝑇 =
2𝑒𝑖𝜅1𝐿

2 cos 𝜅2𝐿 + 𝑖

(
𝑍2
𝑍1

+ 𝑍1
𝑍2

)
sin 𝜅2𝐿

.

(3.4)

From the reflection coefficient we can deduce that there are certain frequencies that will be perfectly
reflected from the barrier and certain frequencies that will be (imperfectly) transmitted through
the barrier. These frequencies follows by solving the equations sin 𝜅2𝐿 = 0 and sin 𝜅2𝐿 = ±1
respectively. The transmitted and reflected frequencies are given by

𝑓𝑇 = 𝑛𝜋 𝑓 ,

𝑓𝑅 = (𝑛 + 1/2)𝜋 𝑓 ,
(3.5)
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respectively. In the above 𝑛 (= 0, 1, 2, 3), . . . is a non-negative integer. The reflected and transmitted
frequencies are defined in units of the intrinsic frequencies which are

𝑓 =
𝑓0

2𝜋
√︂(

𝑐1
𝑐2

)2
− sin2 𝜃1

,

𝑓0 = 𝑐1/𝐿.

(3.6)

Note that the characteristic frequency 𝑓 is defined by the natural frequency 𝑓0, the speed of sound
ratio, and the angle of incidence.

Another no-reflection condition follows from solving 𝑍2/𝑍1 − 𝑍1/𝑍2 = 0, which is equivalent
to solving the equation

𝑧2
𝑧1

cos 𝜃1 =

√︄
1 −

(
𝑐2
𝑐1

)2
sin2 𝜃1. (3.7)

The equation only has a solution for the angle of incidence when either

𝑐2/𝑐1 > 1 and 𝑧2/𝑧1 < 1 or
𝑐2/𝑐1 < 1 and 𝑧2/𝑧1 > 1.

(3.8)

For conventional materials, Eq. (3.8) is difficult to satisfy because typically, the more dense a
material is the higher its speed of sound.

To study the transmission through a barrier it is convenient to also use the transmission power
coefficient. This is because i) it is a single real number (does not take the relative phases into
account), ii) evanescent states does not contribute to the energy flow, and iii) energy conservation is
manifest through the relationship 𝑇Π + 𝑅Π = 1. The reflection and transmission power coefficients
are given by

𝑅Π = |𝑅 |2 =

(
𝑍2
𝑍1

− 𝑍1
𝑍2

)2
sin2 ( 𝑓 / 𝑓 )

4 cos2 ( 𝑓 / 𝑓 ) + (
𝑍2
𝑍1

+ 𝑍1
𝑍2

)2
sin2 ( 𝑓 / 𝑓 ) ,

𝑇Π = |𝑇 |2 =
4

4 cos2 ( 𝑓 / 𝑓 ) + (
𝑍2
𝑍1

+ 𝑍1
𝑍2

)2
sin2 ( 𝑓 / 𝑓 ) .

(3.9)

In Fig. 3.2 we have plotted the transmission power coefficient 𝑇Π as an independent function
of 𝑓 / 𝑓 (= 𝜅2𝐿) and 𝑍2/𝑍1. The former represents the effective barrier length compared to the
wavelength inside the barrier, and the latter represent the effective impedance mismatch. Here the
word effective refers to that both quantities are also dependent on the angle of incidence.

The transmission power coefficient depends on the effective impedance mismatch 𝑍2/𝑍1. The
more dissimilar the impedance of the barrier is from water the more the transmission properties are
suppressed. Close to zero impedance mismatch 𝑍2/𝑍1 = 1, there is a plateu of perfect transmission.
The transmission power coefficient is a periodic function of 𝑓 / 𝑓 , with minima and maxima given by
𝑓 / 𝑓 = (𝑛 + 1/2)𝜋 and 𝑓 / 𝑓 = 𝑛𝜋 respectively. The maxima are not suppressed even for dissimilar
effective impedance mismatch 𝑍2/𝑍1. In order for the barrier to protect effectively against sound it
needs to have an impedance significantly different from water, i.e. either 𝑍2/𝑍1 ≪ 1 or 𝑍2/𝑍1 ≫ 1.
The transmission of such materials is still a function of 𝑓 / 𝑓 , but it is possible to somewhat tune 𝑓

by changing e.g. the barrier length, angle of incidence, or the speed of sound ratio. We will give
some examples of this in terms of a bubble curtain in Sec. 3.3.
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Figure 3.2 The transmission power coefficient as an independent function of frequency and
impedance mismatch.
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3.2 A simplified bubble curtain

The simplest model to describe a bubble curtain is to assume an ideal two-component model where
the water is in a continuous phase and the gas is in a disperse phase. The discussion here is based
on the books written by Brennen [5] and Wood [6]. The model for a bubbly liquid is sometimes
called Wood’s model. For an ideal mix between water and air, the density and speed of sound is

𝜌𝑚 = 𝛼𝜌𝑔 + (1 − 𝛼)𝜌𝑙, and

𝑐m =
1√︄[

𝜌𝑙 (1 − 𝛼) + 𝜌𝑔𝛼
] [

𝛼
𝑘𝑝

+ 1−𝛼
𝜌𝑙𝑐

2
𝑙

] , (3.10)

respectively. The relative volume fraction of the gas is denoted by 𝛼. The subindices 𝑚, 𝑔, and 𝑙

refers to the mix (bubble curtain), gas (air), and liquid (water) respectively. The process can be
either isothermal (𝑘 = 1) or adiabatic (𝑘 = 𝛾 = 1.4) where 𝛾 is the adiabatic constant. In the cases
𝛼 = 0 (only water) and 𝛼 = 1 (only air) the speed of sound becomes equal to the speed of sound of
water and air respectively.

We also need to specify how the parameters depend on water depth. Since, a bubble curtain can
not be placed in very deep water, as the bubbles will be too compressed, we will assume that the
water properties are constant, i.e. 𝑐𝐿 = 1500 m/s and 𝜌𝐿 = 1000 kg/m3. The hydrostatic pressure is
given by the standard expression 𝑝 = 𝑝atm + 𝜌𝑙𝑔𝑧, where 𝑝atm, 𝑔, and 𝑧 are the atmospheric pressure,
acceleration of gravity, and water depth respectively. On the other hand, we will assume that the air
acts as an ideal gas. The ideal gas speed of sound and density is given by 𝑐 =

√
𝑘𝑅𝑇 =

√︁
𝑘 𝑝/𝜌𝐺 and

𝜌𝐺 = (𝐴𝑘 𝑝)1/𝑘 . The constant 𝐴𝑘 is determined by specifying the gas constant 𝑅 and temperature
𝑇 . For 𝑅 = 280 m2/s2K and 𝑇 = 293 K we obtain

𝐴𝑘 =

{
1.22 × 10−5, 𝑘 = 1 (Isothermal)
1.33 × 10−5, 𝑘 = 1.4 ( Adiabatic).

(3.11)

In Fig. 3.3 we have plotted the bubble curtain properties as a function of the volume fraction
of air. For the qualitative purposes discussed here the differences between 𝑘 = 1.4 and 𝑘 = 1 are
negligible. Note that the speed of sound inside of the bubble curtain can be much smaller than
both the speed of sound of pure water and pure air. In addition, the speed of sound is a relatively
flat function of 𝛼 for a large parameter regime. This means that for sound that come from the
water and hit the bubble curtain there is no critical angle. In addition, the relative impedance
mismatch between the bubble curtain and water is also smaller than unity, and decreases with the
volume fraction of air. Consequently, the transmission power function lies in the regime close to the
𝑓 / 𝑓 -axis in the phase diagram of Fig. 3.2. Hence, the bubble curtain is able to strongly reflect
sound but there will be oscillations with the frequency parameter 𝑓 / 𝑓 .
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Figure 3.3 The speed of sound and impedance in the bubble curtain relative to water as
a function of the amount of volume occupied by the air bubbles. The first and
second row corresponds to 𝑘 = 1.4 (adiabatic) and 𝑘 = 1 (isothermal).
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3.3 Examples of bubble curtain protection

The application of the scattering theory to describe a bubble curtain has been previously discussed
in [7]. In this report we have significantly extended the analysis, and description of the bubble
curtain. In this section we will plot the transmission power amplitude for a variety of bubble-curtain
examples. A Matlab program which calculates the transmission properties of a bubble curtain are
given in App. A. We will consider a broad frequency range 𝑓 = 0− 1.6 MHz and all possible angles
of incidence 𝜃1 = (0, 𝜋/2). For conevience we set the length of the barrier 𝐿 = 1 m. Furthermore,
the bubble curtain will have either little (𝛼 = 0.03) or much (𝛼 = 0.3) air bubbles. We will consider
bubble curtains located at the depths 𝑧 = 10 m, 𝑧 = 30 m, and 𝑧 = 100 m. In reality for the case
𝑧 = 100 m, the bubble curtain is likely not functional due to the large hydrostatic pressure, but it is
included to emphasize mathematical trends. We plot the transmission power amplitude as a contour
plot with the frequency 𝑓 and angle of incidence 𝜃1 as variables. All of the examples are plotted in
Figs. 3.4-3.9.

First we will consider the general features of the figures. Note that all the figures contain colored
bands (which may be vertical or curved), where the transmission amplitude is close to unity. The
central frequency of these bands are given by 𝑓 = 𝑛𝜋 𝑓 , 𝑛 = (0, 1, 2, . . . ). We will refer to these
bands as the bands of perfect transmission. For small frequencies the bands of perfect transmission
are vertical, which means that they are relatively independent of the angle of incidence. As the
frequency increases the bands of perfect transmission becomes curved, i.e. very dependent on the
angle of incidence. We can understand this physically by recalling that the relationship between
frequency and wavelength is inversely proportional. For small frequencies, the wavelength is much
larger than both the barrier and the bubbles, irrespective of the angle of incidence. Hence, the
number of oscillations that occur inside the barrier are not very dependent on the angle of incidence.
For large frequencies, the wavelength is very small compared to the barrier. Hence, the sound wave
oscillates and interacts with the barrier many times. For the high frequency case, the length (and
therefore the number of oscillations) that the sound wave travels through the barrier is strongly
dependent on the angle of incidence. Therefore the interaction becomes highly dependent on the
angle of incidence. The net effect is that for small frequencies a lot of the signal is completely
reflected, but for larger frequencies the bubble curtain provides less protection unless the angle of
incidence is small.

In Figs. 3.4-3.6 we consider a bubble curtain with 3% air bubbles at increasing depth. Note that
the general features just discussed are still present. The new effect is that the thickness of the bands
of perfect transmission (the vertical and curved spikes) increases with depth. This can be explained
by the increasing hydrostatic pressure in combination with the small amount of air. For increasing
depths the bubble curtain basically begins to behave more and more like the surrounding water,
which means that the impedance mismatch decreases. Hence, the bubble curtain looses some of its
reflection properties.

In Figs. 3.7-3.9 we consider a bubble curtain with 30% air bubbles at increasing depth. In this
case, since there is much more air present, the bubble curtain does not begin to behave similarly to
water unless the depth is very large. Therefore the widths of the bands of perfect transmission only
slightly increases with depth.
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Figure 3.4 The transmission power coefficient vs frequency and angle of incidence for a bubble curtain with 3% air and at a depth of 10 m.
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Figure 3.5 The transmission power coefficient vs frequency and angle of incidence for a bubble curtain with 3% air and at a depth of 30 m.
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Figure 3.6 The transmission power coefficient vs frequency and angle of incidence for a bubble curtain with 3% air and at a depth of 100 m.

FFI-R
APPO

RT
25/011

25



Figure 3.7 The transmission power coefficient vs frequency and angle of incidence for a bubble curtain with 30% air and at a depth of 10 m.
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Figure 3.8 The transmission power coefficient vs frequency and angle of incidence for a bubble curtain with 30% air and at a depth of 30 m.
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Figure 3.9 The transmission power coefficient vs frequency and angle of incidence for a bubble curtain with 30% air and at a depth of 100 m.
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3.4 Limitations of the theory and possible extensions

In the theory we have presented here the bubble curtain is treated as an ideal two-phase medium
specified by an uniform impedance and speed of sound. In reality, the bubble curtain contains the
following properties:

• The bubbles are not distributed uniformly.
• As the bubbles move upward due to buoyancy, they increase in size due to the lower hydrostatic

pressure.
• If the frequency of the incoming sound wave matches some of the bubble resonance frequencies

bubble dynamics will be initiated.
The non-uniform distribution of the bubbles are important when the sound wave’s wavelength
inside of the bubble curtain is comparable to the bubble radii. If we view the bubble screen as
a disordered medium then we expect (weak) Anderson localization to occur (in 3D). Anderson
localization typically manifests itself in a scattering problem as an exponential damping. Without
working out the computational details it is difficult to determine the damping length scale. An upper
threshold on the frequencies where we expect Anderson localization to occur is given by 𝑓𝐴 = 𝑐𝑚/𝑟
where 𝑟 is the bubble radius. For sound waves with frequencies close to 𝑓𝐴, the disordered bubble
structure will lead to additional damping. In Tab. 3.1 we compute some values of 𝑓𝐴.

An additional damping mechanism comes from the bubble dynamics. The bubble dynamics are
important when the frequency of the sound wave coincides with the resonance frequency of the
bubbles. A simple estimate for the bubble resonance frequency is given by the Minnaert resonance
formula [8]

𝑓𝑟 =
1

2𝜋𝑟

√︄
3𝛾𝑝
𝜌𝐿

. (3.12)

Examples of the bubble resonance frequencies are given in Tab. 3.2.
The classical scattering theory which we have just described is therefore expected to over-predict

the transmission for frequencies larger than those in Tab. 3.1 and close to those of Tab. 3.2. However,
the theory is useful to determine a concrete upper bound on the degree of damping that does not
depend on difficult-to-measure bubble properties such as the individual bubble configuration.
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Table 3.1 Frequencies 𝑓𝐴 where the disordered bubble structure leads to additional damping.
The frequencies are given in kHz.

Bubble radius [mm]
5 10 20 30 40

Speed of sound [m/s]
100 20 10 5 3.3 2.5
40 8 4 2 1.3 1
20 4 2 1 0.7 0.5

Table 3.2 Resonance frequencies 𝑓𝑅 where the bubble dynamics lead to additional damping.
The frequencies are given in kHz.

Bubble radius [mm]
5 10 20 30 40

Depth [m]
10 0.92 0.46 0.23 0.15 0.12
20 1.13 0.56 0.28 0.19 0.14
30 1.30 0.65 0.32 0.22 0.16
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4 Summary and conclusion
A bubble curtain, created by pushing compressed air through a perforated pipe under water, forms a
barrier of rising air bubbles. This curtain can protect marine life from underwater noise pollution. In
this report, we assess the protective capabilities of bubble curtains by developing a straightforward
method to calculate the sound transmission.

Theoretically, the speed of sound in a bubble curtain can be lower than in both air and water
due to that the bubbles create a highly compressible mixture. This effect is dependent on the ratio
of the total air volume to the overall volume of the mixture, known as the volume fraction of air.

Because of the low sound speeds, there is a significant (acoustic) impedance mismatch between
the water and the bubble curtain. Impedance, defined as the product of density and sound speed,
measures how much a medium resists the flow of sound waves. The large impedance mismatch
results in the bubble curtain acting as a highly reflective sound shield under the right conditions,
providing substantial sound protection.

Our model indicates that bubble curtains are most effective at shielding sound frequencies up to
100 kHz, though performance varies with factors like hydrostatic pressure, bubble size, and the
angle of sound waves relative to the curtain. The model shows significantly reduced performance at
frequencies above 1 MHz, but it does not account for disordered localization phenomena in these
ranges. Future models may offer better insights into performance at higher frequencies.
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A Matlab implementation of bubble curtain
%Relevant frequencies
f1 = 0:0.3:200;
f2 = (0+16000):0.3:(16000+200);
f3 = (0+160000):0.3:(160000+200);
f4 = (0+1600000):0.3:(1600000+200);

%Generate a mesh between the relevant frequencies and angle of incidence
[f1,theta1] = meshgrid(f1,0.000001:0.0006:pi/2-0.000001);
[f2,theta1] = meshgrid(f2,0.000001:0.0006:pi/2-0.000001);
[f3,theta1] = meshgrid(f3,0.000001:0.0006:pi/2-0.000001);
[f4,theta1] = meshgrid(f4,0.000001:0.0006:pi/2-0.000001);

%Determine the amount of air, water depth, and adiabatic gas constant
alpha = 0.3;
depth = 20;
gamma = 1.4;

%Calculate transmission power amplitudes
Tpi1 = globalThreeLayer(gamma, alpha, depth, f1, theta1);
Tpi2 = globalThreeLayer(gamma, alpha, depth, f2, theta1);
Tpi3 = globalThreeLayer(gamma, alpha, depth, f3, theta1);
Tpi4 = globalThreeLayer(gamma, alpha, depth, f4, theta1);

%Plot the transmission power amplitude as
%a function of angle of incidence and frequency
figure(1)
sgtitle(sprintf(’$\\alpha = %.2f, z = %.0f $’, alpha, depth))
subplot(1,4,1)
hold on
contourf(f1,theta1,Tpi1)
colorbar
xlabel(’$f$’)
ylabel(’$\theta_1$’)
grid on
grid minor

subplot(1,4,2)
hold on
contourf(f2,theta1,Tpi2)
colorbar
xlabel(’$f$’)
ylabel(’$\theta_1$’)
grid on
grid minor
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subplot(1,4,3)
hold on
contourf(f3,theta1,Tpi3)
colorbar
xlabel(’$f$’)
ylabel(’$\theta_1$’)
grid on
grid minor

subplot(1,4,4)
hold on
contourf(f4,theta1,Tpi4)
colorbar
xlabel(’$f$’)
ylabel(’$\theta_1$’)
grid on
grid minor

%%%%%%%%%%% Necessary Functions %%%%%%%%%%%

%Function to calculate the transmission power amplitude
function Tpi = globalThreeLayer(k, alpha, depth, f, theta1)

%Call the speed of sound and impedance of the bubble curtain
[c2, z2] = SoundSpeedMix(k, alpha, depth);

%Water properties
c1 = 1500;
rho1 = 1000;
c = c2./c1;
z1 = rho1*c1;

%Necessary to define cos(theta_2) through
%an analytical continuation due to complex values
costheta2 = sqrt(1 - c.^2 .* sin(theta1).^2);

%Barrier length fixed to 1 meter divided by the speed of sound in water
l = 1/1500;

%Intermediate variables
x = 2.*pi.*l.*f.*sqrt(1./c.^2 - sin(theta1).^2);
y = z2./z1.*cos(theta1)./costheta2;

%Transmission power amplitude
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Tpi = 4 ./ ( 4.*cos(x).^2 + (y + 1./y).^2.*sin(x).^2);
end

%Function to calculate the speed of sound and impedance
%inside of the bubble curtain - ideal mix theory
function [cmix, impedance_mix] = SoundSpeedMix(k, alpha, z)

%k = 1 isothermal
%k = 1.4 adiabatic
if k == 1

A = 1.22*10^(-5);
else

A = 1.33*10^(-5);
end

%Hydrotatic pressure in water (density = 1000 kg/m^3)
rhoL = 1000;
cL = 1500;
g = 9.81;
patm = 101325;
p = patm + rhoL*g*z;

%Density of gas given a hydrostatic pressure
rhoG = (A * p).^(1./k);

%The ideal mix speed of sound, density, and impedance
cmix = 1./sqrt( (rhoL.*(1-alpha) + ...
rhoG.*alpha).*(alpha./(k*p) +...
(1-alpha)./(rhoL.*cL.^2)) );
rho_mix = alpha.*rhoG + (1-alpha).*rhoL;
impedance_mix = rho_mix .*cmix;
end
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